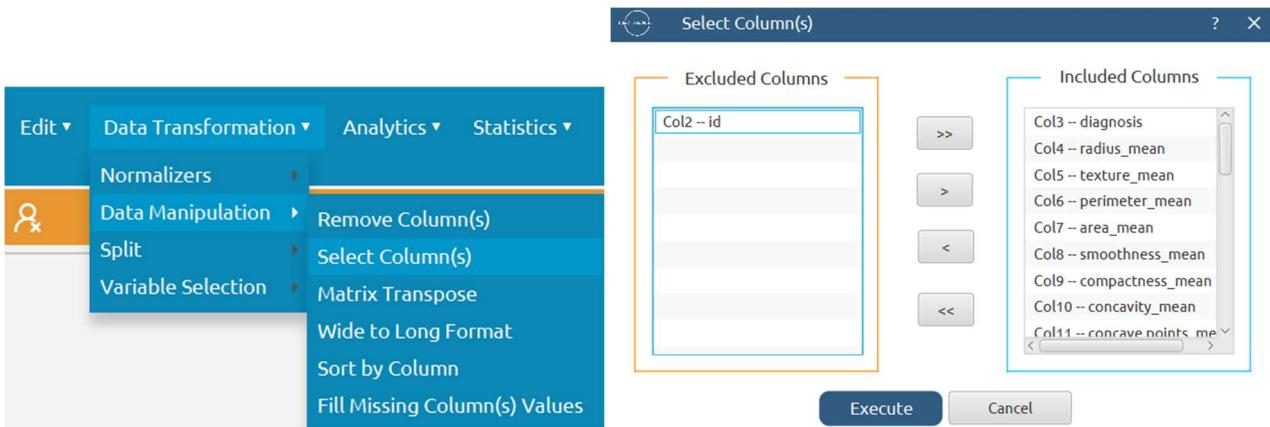

Breast Cancer Wisconsin (Diagnostic) Data set

This dataset contains, which can be found in <https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data> 31 features and 569 samples and it is used to predict whether a breast cancer diagnosis is malignant (M) or benign (B). The features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass and they describe characteristics of the cell nuclei present in the image.

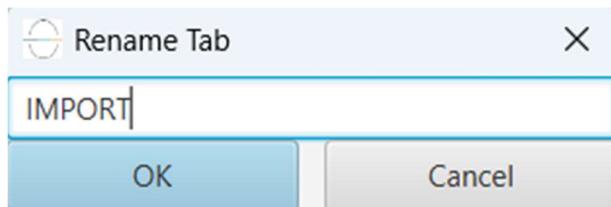
Isalos version used: 2.0.6

Step 1: Import data from file

Right click on the input spreadsheet (left) and choose the option “Import from File”. Then navigate through your files to load the one with the breast cancer data.



The data will appear on the left spreadsheet.


User Header	Col1	Col2 (B)	Col3 (S)	Col4 (D)	Col5 (D)	Col6 (D)	Col7 (D)	Col8 (D)	Col9 (D)	Col10 (D)	Col11 (D)	Col12 (D)	Col13 (D)	Col14 (D)	Col15 (D)	Col16 (D)	Col17 (D)	Col18 (D)	Col19 (D)	Col20 (D)	Col21 (D)	Col22 (D)	Col23 (D)	Col24 (D)	Col25 (D)	Col26 (D)	Col27 (D)	Col28 (D)	Col29 (D)	Col30		
User Row ID	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean	symmetry_mean	fractal_dimension_mean	radius_se	texture_se	perimeter_se	area_se	smoothness_se	compactness_se	concavity_se	concave points_se	symmetry_se	fractal_dimension_se	radius_worst	texture_worst	perimeter_worst	area_worst	smoothness_worst	compactness_worst	concavity_worst	concave points_worst	symmetry_worst	fractal_dimension_worst
1	642302	M	17.99	10.38	122.8	1001	0.1184	0.2776	0.3001	0.1471	0.3419	0.07871	1.002	0.9033	8.589	153.4	0.05699	0.04924	0.05773	0.01587	0.00033	0.00193	28.38	17.33	184.5	2019	0.1622	0.6656	0.7119			
2	642303	M	20.57	17.77	152.5	1002	0.1095	0.2926	0.3047	0.1385	0.3455	0.07871	1.002	0.9033	8.589	153.4	0.05699	0.04924	0.05773	0.01587	0.00033	0.00193	28.38	17.33	184.5	2019	0.1622	0.6656	0.7119			
3	6423003	M	18.69	21.25	150	1003	0.1096	0.1599	0.974	0.1579	0.2649	0.05999	0.7456	0.7849	0.9033	8.589	153.4	0.05699	0.04924	0.05773	0.01587	0.00033	0.00193	28.38	17.33	184.5	2019	0.1622	0.6656	0.7119		
4	64343101	M	11.42	20.38	77.58	1004	0.1425	0.2339	0.2414	0.1052	0.2897	0.09744	0.4956	1.756	3.445	0.05699	0.04924	0.05773	0.01587	0.00033	0.00193	28.38	17.33	184.5	2019	0.1622	0.6656	0.7119				
5	64383420	M	20.29	14.34	135.1	1005	0.1005	0.1328	0.1048	0.1009	0.09883	0.7572	0.7813	5.438	94.44	0.01149	0.03481	0.05688	0.01756	0.00515	22.54	16.07	152.2	1975	0.1374	0.4669	0.4					
6	642708	M	12.45	15.7	82.57	1006	0.1778	0.17	0.1578	0.08089	0.2087	0.07813	0.3348	0.0802	2.217	27.19	0.00751	0.0334	0.08972	0.01137	0.02165	0.00503	15.47	23.75	103.4	741.6	0.1791	0.5249	0.3555			
7	644319	M	18.25	19.98	119.6	1007	0.09483	0.109	0.1127	0.0714	0.1794	0.0742	0.4487	0.0774	3.18	53.91	0.004314	0.01834	0.02354	0.01030	0.01369	0.002179	22.88	27.66	133.2	160.1	0.1442	0.3276	0.3784			
8	64458202	M	19.71	20.83	90.2	1008	0.1779	0.1189	0.1645	0.09596	0.09885	0.2196	0.07451	0.3831	1.377	3.854	50.96	0.008035	0.03029	0.02488	0.01448	0.01485	0.00512	17.06	28.14	110.6	897	0.1654	0.3882	0.2678		
9	644981	M	13	21.82	87.5	1009	0.1573	0.1932	0.1859	0.09693	0.235	0.07389	0.3046	0.1002	1.002	2.406	24.23	0.005731	0.03502	0.03933	0.01232	0.02143	0.00749	18.49	30.73	106.2	739.3	0.1703	0.5401	0.339		
10	64450091	M	12.48	24.54	89.97	1010	0.1188	0.2267	0.2273	0.08647	0.285	0.08162	0.3277	0.1029	0.1029	23.82	0.007148	0.03743	0.04143	0.01769	0.01839	0.002179	22.88	27.66	133.2	160.1	0.1442	0.3276	0.3784			
11	645124	M	16.02	22.34	102.7	1011	0.1499	0.2033	0.2033	0.08567	0.2774	0.08162	0.3277	0.1029	0.1029	23.82	0.007148	0.03743	0.04143	0.01769	0.01839	0.002179	22.88	27.66	133.2	160.1	0.1442	0.3276	0.3784			
12	6461002	M	19.79	17.89	103.6	1012	0.0971	0.1329	0.0954	0.09605	0.1942	0.09082	0.5058	0.9849	3.554	54.16	0.005771	0.04081	0.02791	0.01382	0.02008	0.004144	20.42	27.28	136.5	1299	0.1394	0.5659	0.3945			
13	646252	M	19.17	24.8	132.4	1013	0.0974	0.2458	0.2095	0.1118	0.2397	0.0719	0.9555	3.568	11.07	116.2	0.003139	0.06237	0.0889	0.0409	0.04484	0.01284	20.95	29.94	151.7	1332	0.1037	0.3903	0.3639			
14	646381	M	19.85	23.95	103.7	1014	0.0801	0.1002	0.09388	0.05384	0.1847	0.05338	0.4033	1.078	2.903	36.55	0.000769	0.03156	0.05051	0.01962	0.02081	0.003002	16.84	27.66	112	876.5	0.1131	0.1624	0.2322			
15	64667401	M	13.73	22.61	93.6	1015	0.1131	0.2293	0.2128	0.08025	0.2059	0.07682	0.2131	1.169	2.061	19.21	0.006429	0.06938	0.05501	0.01628	0.008039	15.03	32.01	108.8	697.7	0.1651	0.7725	0.6943				

Step 2: Manipulate data

In our dataset there are not any empty values, so we can select all the columns to be used. However, since the column “id” does not offer any significant information about the breast cancer diagnosis we will exclude it. On the menu click on *Data Transformation → Data Manipulation → Select Column(s)* and select all columns except “id”.

All of the data will appear in the output (right) spreadsheet. This tab can be renamed “IMPORT” by right-clicking on it and choosing the “Rename” option.

Step 3: Split data

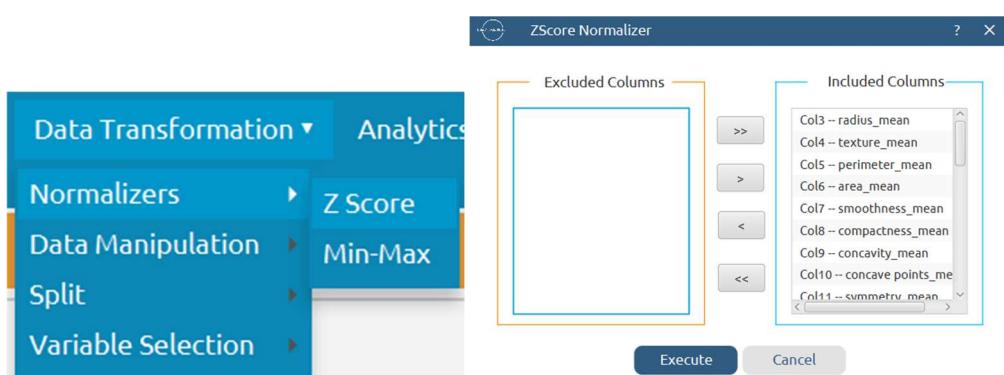
Create a new tab by pressing the “+” button on the bottom of the page with the name “TRAIN_TEST_SPLIT” which we will use for splitting the train and test set.

Import data into the input spreadsheet of the “TRAIN_TEST_SPLIT” tab from the output of the “IMPORT” tab by right-clicking on the input spreadsheet and then choosing “Import from Spreadsheet”.

	Col1	Col2	Col3	Col4	Col5	Col6
User Header	User Row ID					
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						

Split the dataset by choosing Data Transformation → Split → Random Partitioning. Then choose the “Training set percentage” and the column for the sampling as shown below:

The results will be two separate spreadsheets, “TRAIN_TEST_SPLIT: Training Set” and “TRAIN_TEST_SPLIT: Test Set”, which will be available to import into the next tabs.

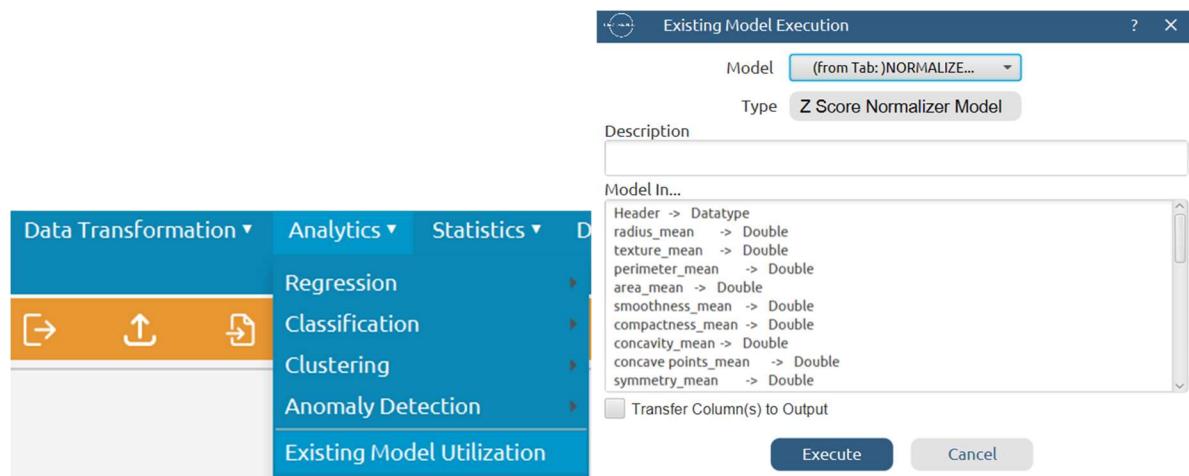

Step 4: Normalize the training set

Create a new tab by pressing the “+” button on the bottom of the page with the name “NORMALIZE_TRAIN_SET”.

Import into the input spreadsheet of the “NORMALIZE_TRAIN_SET” tab the train set from the output of the “TRAIN_TEST_SPLIT” tab by right-clicking on the input spreadsheet and then choosing “Import from Spreadsheet”. From the available Select input tab options choose “TRAIN_TEST_SPLIT: Training Set”.

User Header	Col1	Col2 (S)	Col3 (D)	Col4 (D)	Col5 (D)	Col6 (D)	Col7 (D)	Col8 (D)	Col9 (D)	Col10 (D)	Col11 (D)	Col12 (D)	Col13 (D)	Col14 (D)	Col15 (D)	Col16 (D)	Col17 (D)	Col18 (D)	Col19 (D)	Col20 (D)	Col21 (D)	Col22 (D)	Col23 (D)	Col24 (D)	Col25 (D)	Col26 (D)	Col27 (D)	Col28 (D)	Col29 (D)	Col30	
User Row ID																															
1	M	17.99	103.8	122.8	1001	0.1184	0.2776	0.3001	0.1471	0.2419	0.07371	1.005	0.9033	8.839	151.4	0.006399	0.0404	0.05773	0.01547	0.00193	21.33	17.33	184.6	2019	0.1622	0.6556	0.7119	0.2054			
2	M	19.89	21.25	130	1203	0.1096	0.1599	0.1074	0.1279	0.2069	0.05999	0.7456	0.7869	4.585	94.03	0.00615	0.04206	0.03832	0.02058	0.004771	23.57	25.53	182.5	1709	0.1444	0.2445	0.4004	0.243			
3	M	11.42	20.38	77.58	386.1	0.1425	0.2339	0.2414	0.1052	0.2397	0.09744	1.156	3.445	27.23	0.00911	0.07488	0.05681	0.01887	0.05963	0.002028	14.91	26.5	98.07	687.7	0.2098	0.0885	0.689	0.2675			
4	M	20.29	14.34	181.1	1297	0.1003	0.1328	0.1016	0.1043	0.1809	0.05883	0.7572	0.7813	5.432	44.44	0.01449	0.01549	0.02481	0.01668	0.01885	0.01719	22.14	16.67	181.2	157	0.1314	0.207	0.444	0.1625		
5	M	12.45	16.1	10.2	427.1	0.1171	0.1179	0.1179	0.1179	0.1179	0.05883	0.7572	0.7813	5.432	44.44	0.01449	0.01549	0.02481	0.01668	0.01885	0.01719	22.14	16.67	181.2	157	0.1314	0.207	0.444	0.1625		
6	M	18.23	19.99	119.6	1640	0.0845	0.109	0.1127	0.074	0.1794	0.07482	0.4487	0.7792	3.19	53.9	0.02414	0.02382	0.02354	0.01939	0.02179	0.01768	21.66	19.3	180.2	1697	0.1442	0.2376	0.3704	0.1932		
7	M	13.71	20.83	90.2	577.9	0.1189	0.1465	0.0946	0.0885	0.2195	0.07451	0.5835	1.377	3.866	50.66	0.00805	0.03029	0.03048	0.01448	0.01458	0.02542	17.04	28.14	110.6	997	0.1554	0.2482	0.3739	0.1556		
8	M	13	21.42	87.5	519.8	0.1273	0.1932	0.0933	0.0893	0.238	0.0739	0.0583	1.002	2.456	24.32	0.00571	0.03032	0.03533	0.01215	0.02143	0.03749	15.49	30.73	106.2	793.9	0.1703	0.5401	0.539	0.202		
9	M	15.85	23.95	103.7	782.7	0.0841	0.1020	0.0938	0.0884	0.1545	0.05338	0.4333	1.076	2.923	36.53	0.00769	0.03199	0.05051	0.01992	0.02861	0.03030	16.84	27.66	110	876.5	0.1311	0.1924	0.3232	0.1119		
10	M	13.73	22.81	93.6	578.3	0.1131	0.2293	0.2128	0.08025	0.2059	0.07882	0.2121	1.169	2.061	19.21	0.006429	0.05691	0.050501	0.01628	0.01961	0.008993	15.03	32.01	108.8	697.7	0.1551	0.6843	0.7725	0.2208		
11	M	14.54	27.54	96.73	658.1	0.1139	0.1595	0.1639	0.07364	0.2309	0.07077	0.37	1.033	2.879	32.55	0.005607	0.0424	0.04741	0.0109	0.01837	0.005466	17.45	37.13	124.1	943.2	0.1678	0.6577	0.7026	0.1712		
12	M	14.68	20.13	94.74	684.5	0.09887	0.097	0.07395	0.05259	0.1588	0.05922	0.4727	1.24	3.95	45.4	0.005718	0.01162	0.01909	0.01417	0.020265	0.01907	30.88	123.4	115	0.1454	0.1571	0.2914	0.1609			
13	M	16.13	20.63	101.1	793.8	0.117	0.2022	0.1722	0.1029	0.2164	0.07158	0.4562	1.07	3.418	0.00703	0.02521	0.01816	0.01607	0.01689	0.004142	20.94	31.43	136.8	1315	0.1769	0.4233	0.4704	0.2073			
14	M	13.54	14.36	87.45	586.3	0.09779	0.08129	0.06664	0.04791	0.1685	0.05766	0.2699	0.7866	2.068	0.006482	0.0148	0.02387	0.01515	0.01961	0.00322	15.11	19.26	99.7	711.2	0.144	0.1773	0.259	0.1338			
15	M	15.08	16.71	55.63	525	0.1073	0.121	0.04688	0.0211	0.1907	0.0582	0.7477	1.383	14.67	0.004097	0.01698	0.00649	0.01678	0.003245	14.5	20.49	96.09	695.5	0.1312	0.2776	0.169	0.0738				

Normalize the data using Z-score: Data Transformation → Normalizers → Z Score and select all columns except the “diagnosis” target column.


The results will appear on the output spreadsheet.

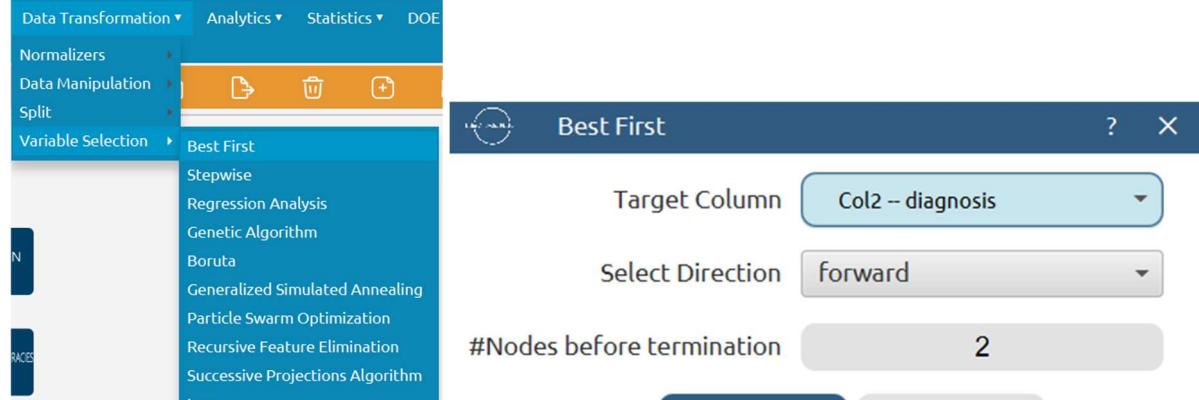
Step 5: Normalize the test set

Create a new tab by pressing the “+” button on the bottom of the page with the name “NORMALIZE_TEST_SET”.

Import into the input spreadsheet of the “NORMALIZE_TEST_SET” tab the test set from the output of the “TRAIN_TEST_SPLIT” tab by right-clicking on the input spreadsheet and then choosing “Import from Spreadsheet”. From the available Select input tab options choose “TRAIN_TEST_SPLIT: Test Set”.

Normalize the test set using the existing normalizer of the training set: [Analytics](#) → [Existing Model Utilization](#) → [Model \(from Tab:\)](#) **NORMALIZE TRAIN SET**

The results will appear on the output spreadsheet.


User Header	User Row ID	Col1	Col2 (S)	Col3 (D)	Col4 (D)	Col5 (D)	Col6 (D)	Col7 (D)	Col8 (D)	Col9 (D)	Col10 (D)	Col11 (D)	Col12 (D)	Col13 (D)	Col14 (D)	Col15 (D)	Col16 (D)	Col17 (D)	Col18 (D)	Col19 (D)	Col20 (D)	Col21 (D)	Col22 (D)	Col23 (D)	Col24 (D)	Col25 (D)	Col26 (D)	Col27 (D)	Col28 (D)	Col29 (D)	Col30					
		diagnosis	radius_mean	texture_mean	area_mean	perimeter_mean	area_se	perimeter_se	area_worst	perimeter_worst	concave_points_mean	concave_points_se	concave_points_worst	concave_points_se	symmetry_mean	symmetry_se	smoothness_mean	smoothness_se	smoothness_worst	smoothness_se	fractal_dimension_mean	fractal_dimension_se	fractal_dimension_worst	fractal_dimension_se	radius_worst	texture_worst	area_worst	perimeter_worst								
1	M	1.7655245	-0.3825659	1.6281156	1.8227163	-0.7937751	-0.4833219	0.5476245	0.0988442	-0.8411952	0.6956953	2.8161655	0.6901032	0.5914713	0.0971773	0.4813540	0.2723005	0.7928747	-0.2955867	1.7912474	-0.3920958	1.5262453	1.905022	0.3573119	-0.4311039	-0.1452237	1.7070561									
2	M	-0.4785211	0.2030103	-0.3347143	-0.3114258	1.5950554	2.5838333	1.7602048	0.8914695	0.8146960	2.7312729	-0.3827376	0.6877841	-0.4116911	-0.3402420	0.0954884	2.8753271	1.5333990	0.4323929	-0.3076832	2.3004743	2.3970765	2.3481324	5.14997	0.4043493	1.6166912										
3	M	0.008380	0.4191149	0.4172661	0.3742362	-0.9324180	-0.7710338	-0.7055105	-0.4076460	-0.0990084	-0.0899084	-0.0610583	-0.1990904	-0.0204811	-0.0871233	-0.0977472	-0.7074005	-0.6769662	-0.7132111	-0.2793996	0.3958113	1.3244109	0.4851953	0.4699354	-0.0101783	-0.8328329	-0.0151540	-0.2181151								
4	M	0.4419995	-0.3357166	0.6340487	0.3929051	0.07847493	0.4011916	0.1397967	0.4412054	0.1205584	-0.2635053	0.3816692	-0.4232939	0.3484342	0.2833490	-0.4161926	0.8277495	-0.1372389	0.1768680	-0.0384602	0.1747468	0.4709377	0.4893249	0.7321212	0.4247076	1.9619816	0.6717849	1.013909								
5	M	1.3791717	1.1930559	1.6097383	1.2729861	0.0964608	2.7019762	1.4962606	1.8144282	1.2167554	2.1176554	1.9694529	2.2719084	1.4097203	1.7879177	1.2718184	1.1733654	1.921961	4.7682323	0.9046886	0.4906332	0.6597181	1.3160262	0.7900999	0.8735998	0.430467	0.3645245									
6	M	1.820112	0.8955651	1.3313747	1.3770424	0.0964608	2.7019762	1.4962606	1.8144282	1.2167554	2.1176554	1.9694529	2.2719084	1.4097203	1.7879177	1.2718184	1.1733654	1.921961	4.7682323	0.9046886	0.4906332	0.6597181	1.3160262	0.7900999	0.8735998	0.430467	0.3645245									
7	M	1.820112	0.8955651	1.3313747	1.3770424	-0.1042389	-0.1042389	0.8795052	0.9623156	0.9623156	-0.1042389	0.8795052	-0.1042389	-0.1042389	-0.1042389	-0.1042389	-0.1042389	-0.1042389	-0.1042389	-0.1042389	-0.1042389	-0.1042389	-0.1042389	-0.1042389	-0.1042389	-0.1042389	-0.1042389	-0.1042389	-0.1042389							
8	M	0.6831327	0.3151307	0.7105653	0.7346235	0.3110230	1.5930855	0.6533203	0.7075153	1.4273754	-0.5520955	0.5952055	1.3931208	1.3234073	0.2737810	-0.7270859	0.3005984	0.2277785	0.3112054	-0.7172054	-0.6611403	2.4557179	2.5481769	3.0203997	0.5408492	0.3909355	0.2108066	1.3121260								
9	M	0.1103771	0.4887123	0.2488995	-0.0487593	0.6394779	0.6394779	1.0010320	1.6336553	1.6336553	-0.3388379	-0.4233971	-0.3720204	-0.4233971	-0.3844871	0.2787660	-0.0756950	0.0756950	-0.0756950	-0.1743261	-0.2023170	-0.2103407	0.0310407	0.1727200	1.3541617	0.5071555	0.6533659	0.0747055	0.1422665							
10	M	1.2435586	0.1723197	1.5961873	1.1930120	-0.119743	0.5649466	0.7666074	0.706951	-0.1459511	-0.1459511	1.6073071	1.1453055	1.1679564	1.1040788	0.0853698	0.0853698	0.6535240	0.2035170	0.1541993	0.1541993	0.1541993	0.1541993	0.1541993	0.1541993	0.1541993	0.1541993	0.1541993	0.1541993	0.1541993	0.1541993	0.1541993	0.1541993	0.1541993	0.1541993	0.1541993
11	M	1.2288777	0.2597166	1.3045659	1.1764719	0.7448683	1.6139142	1.8185770	1.939912	1.3790125	-0.1595862	1.5233284	0.44747474	1.3382376	1.3452109	-0.2556394	0.44747474	0.44747474	0.44747474	0.44747474	0.44747474	0.44747474	0.44747474	0.44747474	0.44747474	0.44747474	0.44747474	0.44747474	0.44747474	0.44747474	0.44747474	0.44747474	0.44747474			
12	M	0.2236024	1.2798104	0.1397879	0.1032282	0.5723405	0.7451462	0.1524008	0.3270869	0.0677020	-0.0917004	-1.0270296	0.2817903	1.7811221	1.7811221	0.0917414	-0.0917414	-0.0917414	-0.0917414	0.2231302	1.2181220	-0.1373075	-0.7474340	1.3153513	1.5781917	1.3836259	0.7937458	1.1002071	1.6751075	0.1068972						
13	M	-0.2491305	0.1793042	-0.2020498	-0.2020498	0.5723405	0.7451462	0.1524008	0.3270869	0.0677020	-0.0917004	-1.0270296	0.2817903	1.7811221	1.7811221	0.0917414	-0.0917414	-0.0917414	-0.0917414	0.2231302	1.2181220	-0.1373075	-0.7474340	1.3153513	1.5781917	1.3836259	0.7937458	1.1002071	1.6751075	0.1068972						
14	M	-0.2795402	0.8119007	-0.2785359	-0.3381059	0.1300918	0.032816	-0.0781104	0.0648827	-0.2337276	-0.1373276	-0.7338689	-0.1020849	-0.7604999	-0.6458381	-0.2096691	-0.5889917	-0.7973370	-0.1384080	-0.5917021	-0.1667799	-0.1274759	-0.0998632	-0.0593933	-0.0593933	-0.0593933	-0.0593933	-0.0593933	-0.0593933	-0.0593933	-0.0593933	-0.0593933	-0.0593933			
15	M	-0.2795402	-0.1034038	-0.2340916	-0.3495757	1.3975471	0.3638807	0.5416913	0.0650507	-0.1170381	-0.6989791	-0.4202767	-0.5954881	-0.4471905	-0.3411773	-0.1667799	-0.1274759	-0.0998632	-0.0593933	-0.0593933	-0.0593933	-0.0593933	-0.0593933	-0.0593933	-0.0593933	-0.0593933	-0.0593933	-0.0593933	-0.0593933	-0.0593933	-0.0593933	-0.0593933	-0.0593933	-0.0593933		

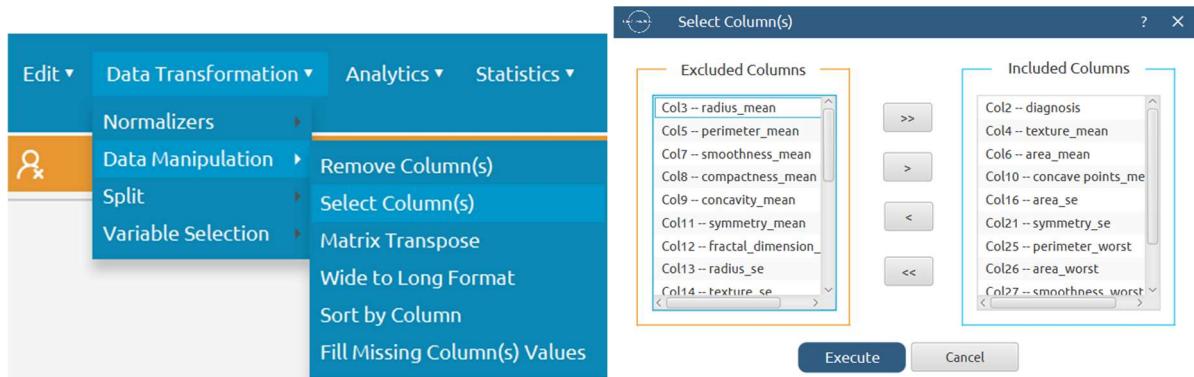
Step 6: Best First Algorithm

We want to choose the features that will be the most useful for predicting the diabetes outcome. Create a new tab by pressing the “+” button on the bottom of the page with the name “BEST_FIRST”.

Import data into the input spreadsheet of the “BEST_FIRST” tab from the output of the “NORMALIZE_TRAIN_SET” tab by right-clicking on the input spreadsheet and then choosing “Import from Spreadsheet”.

Use the best first algorithm by choosing: *Data Transformation* → *Variable Selection* → *Best First*

The results will appear on the output spreadsheet.


User Header	User Row ID	Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)	Col6 (D)	Col7 (D)	Col8 (D)	Col9 (D)	Col10 (D)	Col11 (D)	Col12 (S)
1		-2.0360356	0.9365649	2.5227065	2.3531581	1.1842766	2.2936836	2.0016784	1.3443387	2.1582478	2.2885712	M	
2		0.3960639	1.4935904	2.0297704	1.1143034	0.2588685	1.3388526	1.4550635	0.5554415	0.8768970	1.9496047	M	
3		0.2014065	-0.7590540	1.4469761	-0.2795906	4.8220028	-0.2563994	-0.5573610	3.4539739	2.0357477	2.1690250	M	
4		-1.1500086	1.7528003	1.4238698	1.1228588	-0.3482385	1.3299289	1.2187848	0.2452010	0.6299368	0.7314439	M	
5		-0.8457164	-0.5081168	0.8228472	-0.2804253	0.1544068	-0.1216522	-0.2507276	2.0933478	1.2938872	0.9069802	M	
6		0.1119088	1.0441094	0.6459550	0.2771323	1.28238466	1.3596744	1.2734463	0.5465775	0.5240967	1.1960096	M	
7		0.3020914	-0.2301555	0.2826714	0.2155756	-0.6800581	0.0925155	0.0232851	1.4861629	-0.0178436	0.6270302	M	
8		0.5235981	-0.3903693	1.1473634	-0.3403126	0.1273696	-0.0383647	-0.2547832	1.7033312	1.3110372	1.3897047	M	
9		1.0001733	0.3345912	0.1232373	-0.0844872	1.1572394	0.1341592	-0.0128620	-0.8317766	-0.1922837	-0.0342571	M	
10		0.7003561	-0.2290525	0.8064160	-0.4469414	-0.0963014	0.0389736	-0.3281354	1.4728669	2.0720077	1.6136647	M	
11		1.8034150	-0.0070695	0.6367124	-0.1685799	-0.2241134	0.4940800	0.1047484	1.5925311	2.1126778	0.8630961	M	
12		0.1454704	0.0637996	0.0962799	0.0995569	-0.7734592	0.4732581	0.4482341	0.6440816	0.0977965	0.7072321	M	
13		0.2665297	0.3789878	1.3853591	0.2827663	-0.4305789	0.8718480	0.7603336	2.0844838	1.0140971	1.4093769	M	
14		-1.1455337	-0.2621431	-0.0264407	-0.3561713	-0.0729511	-0.2317106	-0.3043312	0.5377135	-0.1589637	0.2214810	B	
15		-0.8434790	-0.3898178	-0.4554491	-0.5416761	-0.4440975	-0.3390919	-0.4466274	-0.0295834	-0.4039638	-0.6254812	B	

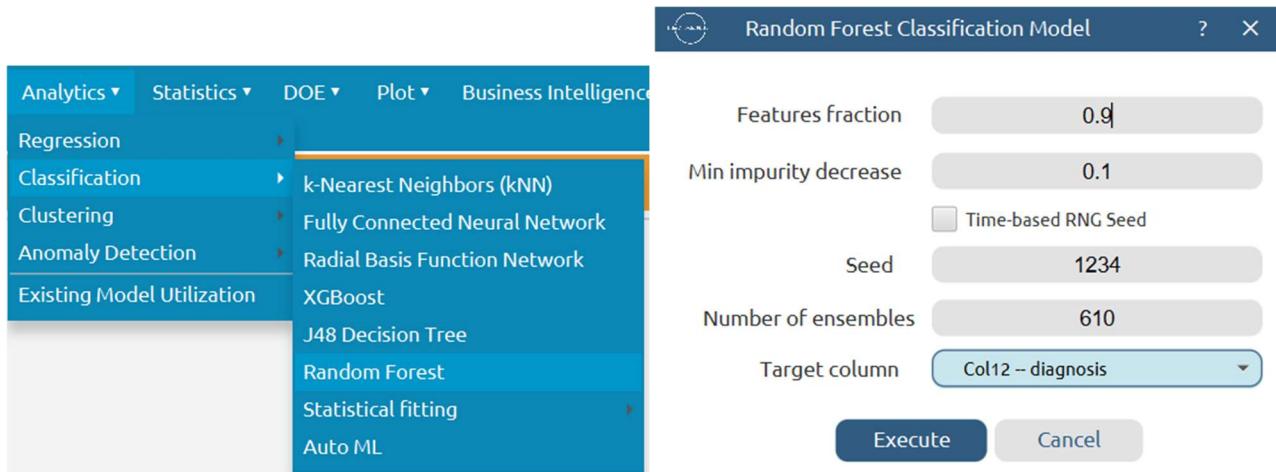
Step 7: Feature Selection: Test set

We need to select the features of the test set that the best first algorithm indicated. Create a new tab by pressing the “+” button on the bottom of the page with the name “FEATURE_SELECTION”.

Import data into the input spreadsheet of the “FEATURE_SELECTION” tab from the output of the “NORMALIZE_TEST_SET” tab by right-clicking on the input spreadsheet and then choosing “Import from Spreadsheet”.

Select the columns that correspond to the important features: Data Transformation → Data Manipulation → Select Column(s)

The results will appear on the output spreadsheet.


	Col1	Col2 (S)	Col3 (D)	Col4 (D)	Col5 (D)	Col6 (D)	Col7 (D)	Col8 (D)	Col9 (D)	Col10 (D)	Col11 (D)	Col12 (D)
User Header	User Row ID	diagnosis	texture_mean	area_mean	concave_points_mean	area_se	symmetry_se	perimeter_worst	area_worst	smoothness_worst	concavity_worst	concave_points_worst
1		M	-0.3825659	1.8327693	0.5476245	0.6980132	-0.7992674	1.5262493	1.8905922	-0.3575519	-0.1462237	1.0870561
2		M	1.0203103	-0.5114258	0.9394060	-0.3482420	-0.3076828	-0.2926889	-0.3039785	2.3681323	4.0844390	1.6166912
3		M	0.8413149	0.3762302	-0.4007640	-0.0024811	-0.7120111	0.4851563	0.4693934	-0.6101763	-0.6151540	-0.2181161
4		M	-0.3557166	0.3299034	0.4421054	0.2823490	-0.0385402	0.8629243	0.7321212	0.3427052	0.6127868	1.0113939
5		M	1.1903559	1.2729862	1.6164229	1.5769177	3.0043686	1.3150562	0.7903093	-1.2483852	0.4530467	0.9463245
6		M	0.5974337	1.6507709	1.1845904	1.4976243	-0.8398231	2.3591237	2.6699593	0.8568180	1.3022172	1.8860485
7		M	0.7965661	2.0478584	0.9622556	1.1134688	-1.1753296	2.3948183	3.0525897	0.3648652	0.2158866	1.3125293
8		M	0.4251507	0.6707368	1.1003805	1.2931309	-0.7021794	2.0676177	2.3472801	2.1553959	0.9704870	1.4426682
9		M	0.4587123	-0.0456753	1.0010230	-0.4085467	-0.7193849	0.4435126	0.0231088	0.9144340	1.3840473	2.3596936
10		M	0.1723197	1.1930172	0.7309351	1.1040788	0.3117139	0.9640591	0.9155017	0.0856488	0.3584766	0.5271561
11		M	1.2597166	1.1764719	1.9399122	1.3432109	-0.0397691	1.5768167	1.3862959	0.7637458	1.6751075	1.0688972
12		M	1.2798536	0.1032326	-0.5096207	1.3640776	-1.5376275	-0.3554519	-0.3261958	-1.6840515	-1.2125624	-1.2888870
13		M	0.1790320	-0.3203275	0.3270869	-0.1940372	-0.3937101	0.1668793	0.0412705	0.9365941	0.4652967	0.5301826
14		M	0.5213607	-0.3581059	0.0944827	-0.5454321	-1.1384608	-0.0591866	-0.2523146	0.8169299	0.4966567	0.7042056
15		M	-0.1834336	-0.3495575	0.6305507	-0.3417733	-0.3642150	-0.1394995	-0.2193414	2.0711878	1.1228771	1.4320755

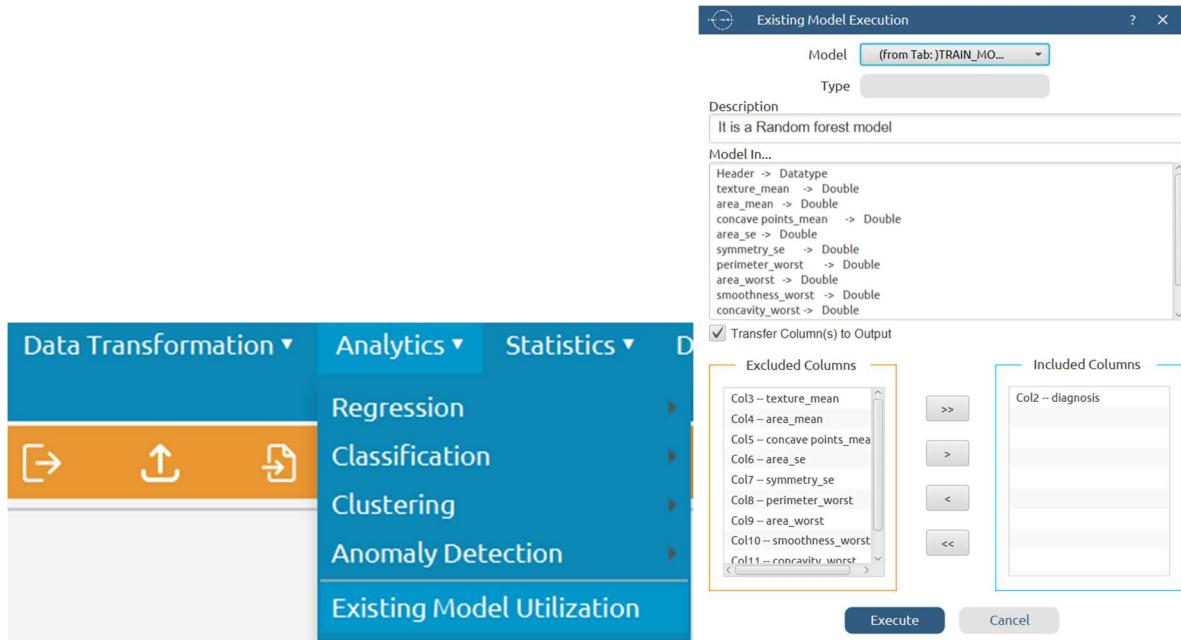
Step 8: Train the model

Create a new tab by pressing the “+” button on the bottom of the page with the name “TRAIN_MODEL(.fit)”.

Import data into the input spreadsheet of the “TRAIN_MODEL(.fit)” tab from the output of the “BEST_FIRST” tab by right-clicking on the input spreadsheet and then choosing “Import from Spreadsheet”.

Use the Random Forest method to train and fit the model: *Analytics → Classification → Random Forest*

The predictions will appear on the output spreadsheet.


	Col1	Col2 (S)	Col3 (S)
User Header	User Row ID	diagnosis	Prediction
1		M	M
2		M	M
3		M	B
4		M	M
5		M	B
6		M	M
7		M	M
8		M	B
9		M	M
10		M	B
11		M	M
12		M	M
13		M	M
14		B	B
15		B	B

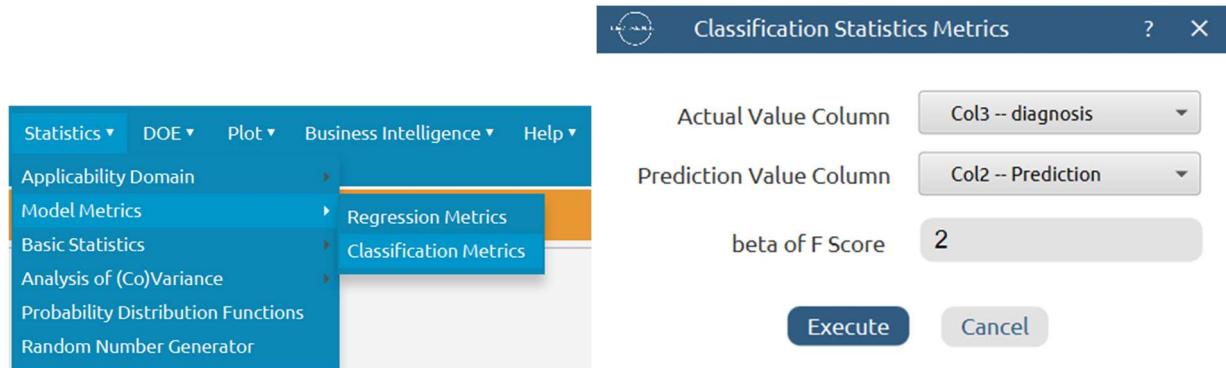
Step 9: Validate the model

Create a new tab by pressing the “+” button on the bottom of the page with the name “VALIDATE_MODEL(.predict)”.

Import data into the input spreadsheet of the “VALIDATE_MODEL(.predict)” tab from the output of the “FEATURE_SELECTION” tab by right-clicking on the input spreadsheet and then choosing “Import from Spreadsheet”.

To validate the model: *Analytics* → *Existing Model Utilization* → *Model (from Tab:) TRAIN_MODEL(.fit)*. Choose the column “diagnosis” to be transferred to the output spreadsheet.

The predictions will appear on the output spreadsheet.


	Col1	Col2 (S)	Col3 (S)
User Header	User Row ID	Prediction	diagnosis
1		M	M
2		B	M
3		M	M
4		M	M
5		M	M
6		M	M
7		M	M
8		M	M
9		M	M
10		M	M
11		M	M
12		B	M
13		M	M
14		B	M
15		B	M

Step 10: Statistics calculation

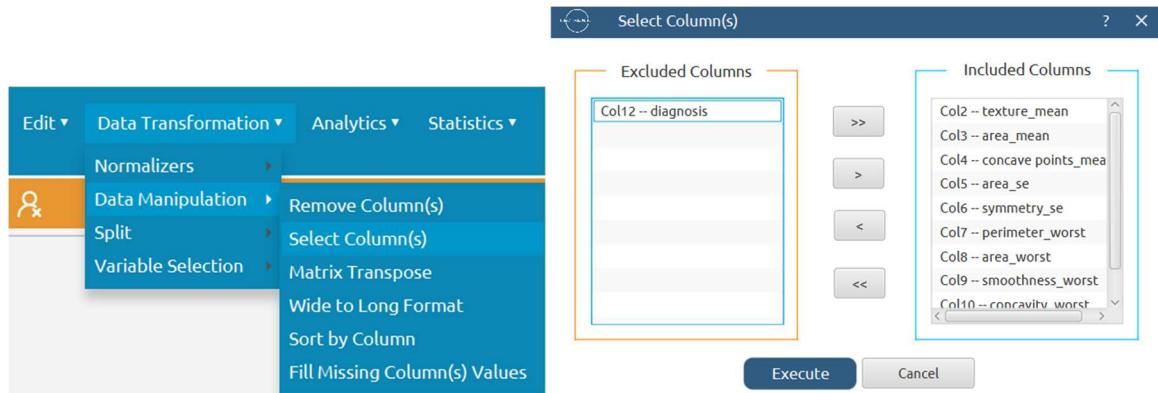
Create a new tab by pressing the “+” button on the bottom of the page with the name “STATISTICS_ACCURACIES”.

Import data into the input spreadsheet of the “STATISTICS_ACCURACIES” tab from the output of the “VALIDATE_MODEL(.predict)” tab by right-clicking on the input spreadsheet and then choosing “Import from Spreadsheet”.

Calculate the statistical metrics for the classification: Statistics → Model Metrics → Classification Metrics

The results will appear on the output spreadsheet.

	Col1 (S)	Col2 (S)	Col3 (S)	Col4 (S)
User Header	User Row ID			
1			Predicted Class	Predicted Class
2			M	B
3	Actual Class	M	42	11
4	Actual Class	B	4	85
5				
6				
7	Classification Accuracy	0.8943662		
8				
9	Precision		0.9130435	0.8854167
10				
11	Recall/Sensitivity		0.7924528	0.9550562
12				
13	Specificity		0.9550562	0.7924528
14				
15	F1 Score		0.8484848	0.9189189
16				
17	F (beta=2)		0.8139535	0.9402655
18				
19	MCC	0.7725647		

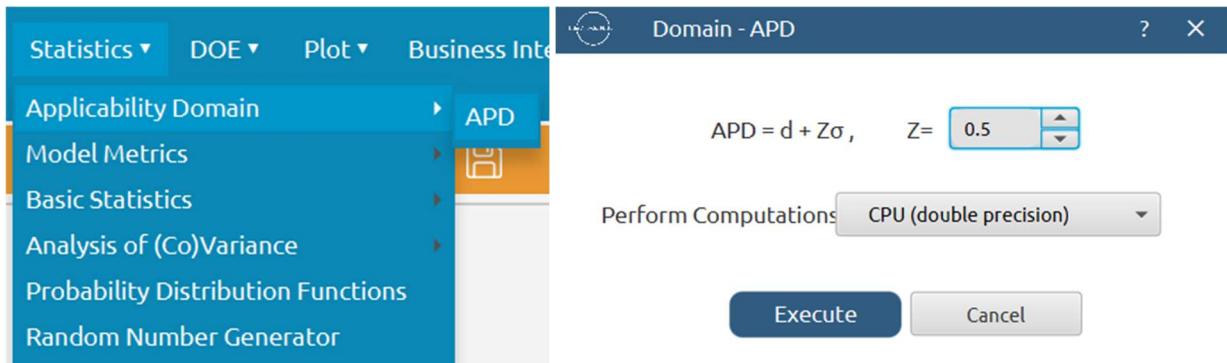

Step 11: Reliability check for each record of the test set

Step 11.a: Create the domain

Create a new tab by pressing the “+” button on the bottom of the page with the name “EXCLUDE_DIAGNOSIS”.

Import data into the input spreadsheet of the “EXCLUDE_DIAGNOSIS” tab from the output of the “BEST_FIRST” tab by right-clicking on the input spreadsheet and then choosing “Import from Spreadsheet”.

Manipulate the data to exclude the target column “diagnosis”: Data Transformation → Data Manipulation → Select Column(s)



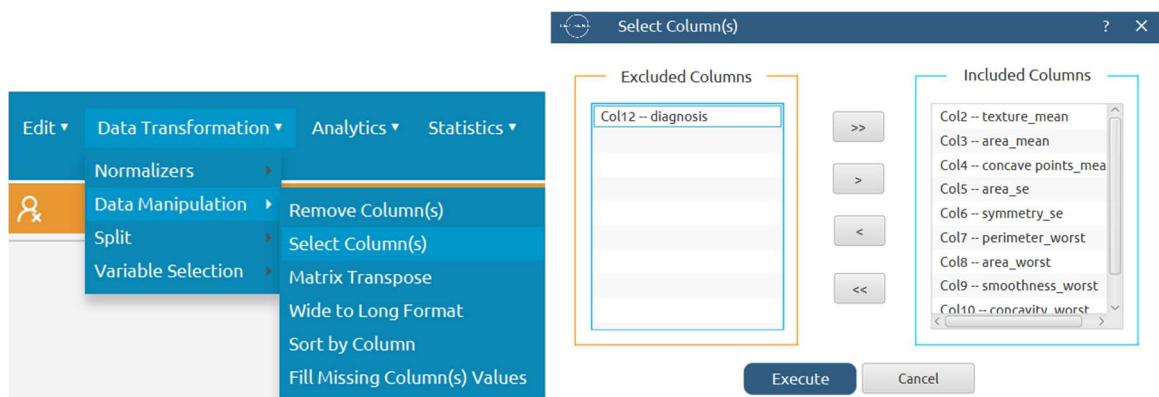
The results will appear on the output spreadsheet.

Create a new tab by pressing the “+” button on the bottom of the page with the name “DOMAIN”.

Import data into the input spreadsheet of the “DOMAIN” tab from the output of the “EXCLUDE_DIAGNOSIS” tab by right-clicking on the input spreadsheet and then choosing “Import from Spreadsheet”.

Create the domain: Statistics → Applicability Domain → APD

The results will appear on the output spreadsheet.

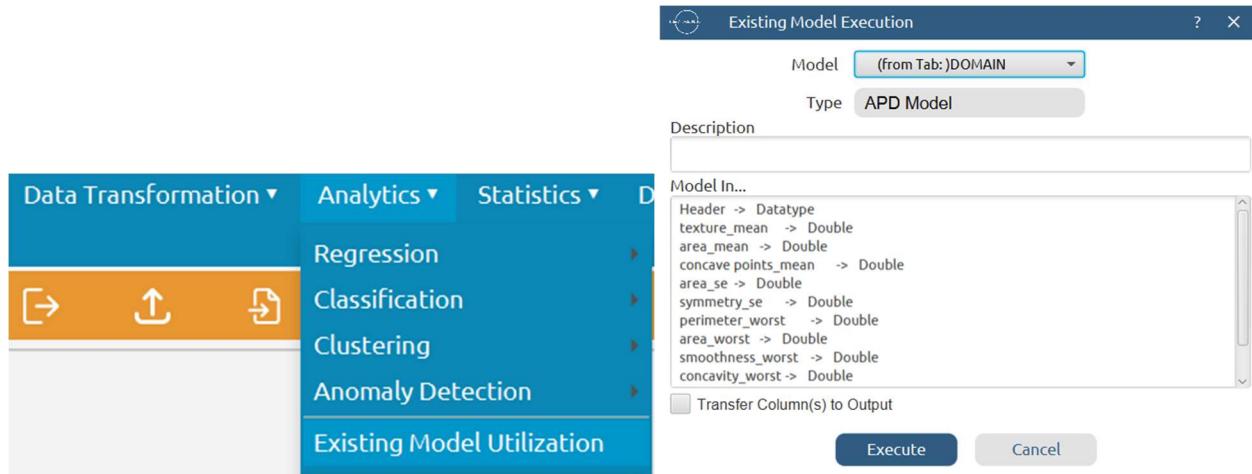

	Col1	Col2 (D)	Col3 (D)	Col4 (S)
User Header	User Row ID	Domain	APD	Prediction
1		0.0	2.9702124	reliable
2		0.0	2.9702124	reliable
3		0.0	2.9702124	reliable
4		0.0	2.9702124	reliable
5		0.0	2.9702124	reliable
6		0.0	2.9702124	reliable
7		0.0	2.9702124	reliable
8		0.0	2.9702124	reliable
9		0.0	2.9702124	reliable
10		0.0	2.9702124	reliable
11		0.0	2.9702124	reliable
12		0.0	2.9702124	reliable
13		0.0	2.9702124	reliable
14		0.0	2.9702124	reliable
15		0.0	2.9702124	reliable

Step 11.b: Check the test set reliability

Create a new tab by pressing the “+” button on the bottom of the page with the name “EXCLUDE_DIAGNOSIS_TEST_SET”.

Import data into the input spreadsheet of the “EXCLUDE_DIAGNOSIS_TEST_SET” tab from the output of the “FEATURE_SELECTION” tab by right-clicking on the input spreadsheet and then choosing “Import from Spreadsheet”.

Manipulate the data to exclude the target column “diagnosis”: [Data Transformation → Data Manipulation → Select Column\(s\)](#)

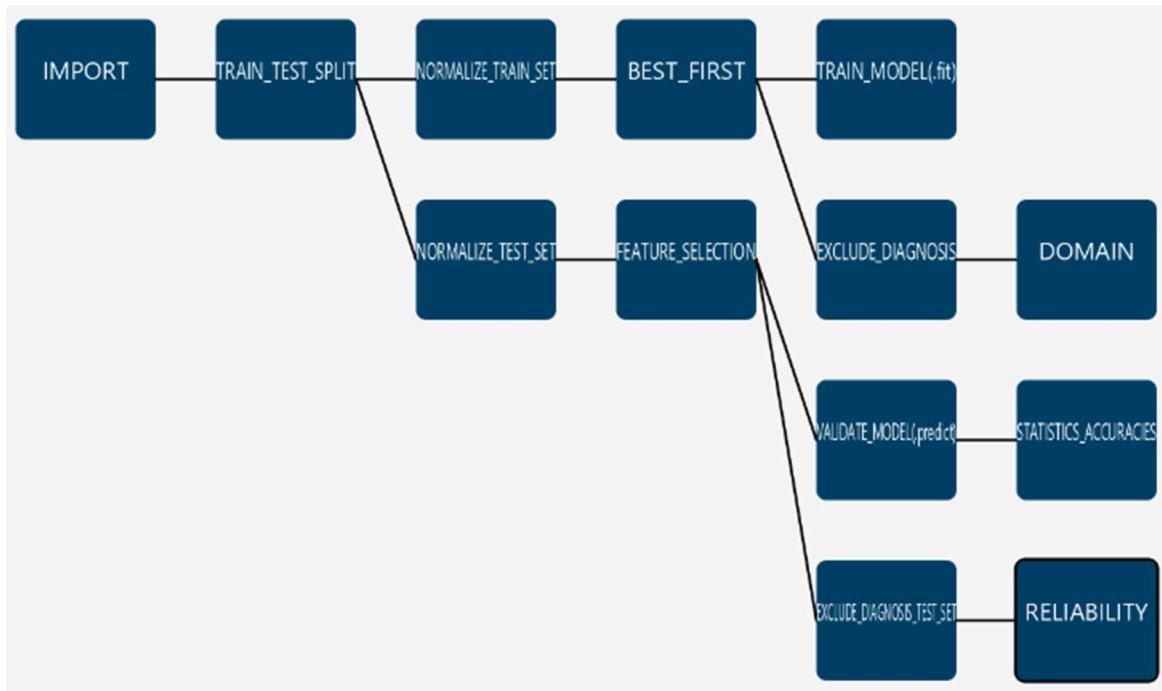


The results will appear on the output spreadsheet.

Create a new tab by pressing the “+” button on the bottom of the page with the name “RELIABILITY”.

Import data into the input spreadsheet of the “RELIABILITY” tab from the output of the “EXCLUDE_DIAGNOSIS_TEST_SET” tab by right-clicking on the input spreadsheet and then choosing “Import from Spreadsheet”.

Check the Reliability: Analytics → Existing Model Utilization → Model (from Tab:) DOMAIN



The results will appear on the output spreadsheet.

	Col1	Col2 (D)	Col3 (D)	Col4 (S)
User Header	User Row ID	Domain	APD	Prediction
1		1.0748767	2.9702124	reliable
2		2.2838975	2.9702124	reliable
3		0.5921315	2.9702124	reliable
4		0.9078477	2.9702124	reliable
5		1.8209589	2.9702124	reliable
6		1.5301520	2.9702124	reliable
7		1.7180436	2.9702124	reliable
8		1.3950809	2.9702124	reliable
9		1.1623175	2.9702124	reliable
10		0.9187315	2.9702124	reliable
11		1.4637847	2.9702124	reliable
12		2.1716145	2.9702124	reliable
13		0.6998135	2.9702124	reliable
14		0.8731378	2.9702124	reliable
15		1.0393431	2.9702124	reliable

Final Isalos Workflow

Following the above-described steps, the final workflow on Isalos will look like this:

